Synthesis and reactivity of $\left[\mathrm{Pd}_{2} \mathrm{~L}_{2} \mathrm{R}_{2}(\mu-\mathrm{OH})_{2}\right]$-type complexes ($\mathbf{L}=\mathbf{P E t}_{3}$ or $\mathbf{P P h}_{3} ; \mathbf{R}=\mathbf{M e}, \mathbf{P h C H}_{2}$ or $\mathbf{P h}$). Crystal structure of $\left[\mathbf{P d}_{2}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ph}_{2}(\mu-\mathrm{OH})\left(\mu-\mathrm{NHC}_{6} \mathrm{H}_{4} \mathbf{O M e}-p\right)\right]$

José Ruiz, ${ }^{a}$ Venancio Rodríguez, ${ }^{a}$ Gregorio López, ${ }^{*, a}$ Penny A. Chaloner ${ }^{b}$ and P. B. Hitchcock ${ }^{b}$
a Departamento de Quimica Inorgánica, Universidad de Murcia, 30071-Murcia, Spain
${ }^{b}$ School of Chemistry, Physics and Environmental Science, University of Sussex, Brighton,
UK BNI 9QJ

Abstract

The metathesis of Cl^{-}by OH^{-}in $\left[\mathrm{Pd}_{2}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{R}_{2}(\mu-\mathrm{Cl})_{2}\right]$ gave the binuclear hydroxo complexes $\left[\mathrm{Pd}_{2}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{R}_{2}-\right.$ $\left.(\mu-\mathrm{OH})_{2}\right]\left(\mathrm{R}=\mathrm{Me}\right.$ or $\left.\mathrm{PhCH}_{2}\right)$ which in CDCl_{3} solution exist as $1: 1$ mixtures of syn and anti isomers. They reacted with 3,5 -dimethylpyrazole (Hdmpz) in 1:2 molar ratio to yield the corresponding azolate complexes anti $\left[\mathrm{Pd}_{2}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{R}_{2}(\mu-\mathrm{dmpz})_{2}\right]$ and with oxalic acid $\left(\mathrm{H}_{2} \mathrm{ox}\right)$, in 1:1 molar ratio, to afford the corresponding oxalate complexes anti-[$\mathrm{Pd}_{2}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{R}_{2}(\mu$-ox $\left.)\right]$. The cleavage of the OH bridges of the di- μ-hydroxo complexes yields the mononuclear $\left[\operatorname{Pd}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{R}(\mathrm{OH})\right]$ which in solution are present as $1: 1$ mixtures of cis and trans isomers. Binuclear μ-hydroxo- μ-amido palladium complexes $\left[\mathrm{Pd}_{2} \mathrm{~L}_{2} \mathrm{R}_{2}(\mu-\mathrm{OH})\left(\mu \text { - } \mathrm{NHR}^{\prime \prime}\right)_{2}\right]\left(\mathrm{R}=\mathrm{Me}, \mathrm{L}=\mathrm{PEt}_{3} ; \mathrm{R}=\mathrm{Ph}\right.$, $\mathrm{L}=\mathrm{PPh}_{3} ; \mathrm{R}^{\prime \prime}=\mathrm{Ph}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p$ or $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-p$) have been prepared by reaction of $\left[\mathrm{Pd}_{2} \mathrm{~L}_{2} \mathrm{R}_{2}(\mu-\mathrm{OH})_{2}\right]$ with the corresponding aromatic amine $\mathrm{R}^{\prime \prime} \mathrm{NH}_{2}$. The NMR data indicate that the isolated complexes are the ant i isomers. The crystal structure of complex $\left[\mathrm{Pd}_{2}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ph}_{2}(\mu-\mathrm{OH})\left(\mu-\mathrm{NHC}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)\right]$ has been established; the $\mathrm{Pd}_{2} \mathrm{ON}$ ring is severely bent.

Since the OH^{-}ligand is an σ, π-electron donor there has been the deceptive perception that late transition-metal hydroxides are unstable because π donation to electron-rich metal centres should be unfavorable. Until recently the only reported organopalladium hydroxo complexes were of the type $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}-\right.$ $\mathrm{R}(\mathrm{OH})$], prepared by Yoshida et al. ${ }^{1}$ Recent work, however, suggests that late metal-hydroxide bonds are not particularly weak relative to $\mathrm{M}-\mathrm{H}$ or $\mathrm{M}-\mathrm{C}$ bonds, but the presence of lone electron pairs gives these compounds modes of reactivity not normally available to metal alkyls and hydrides. ${ }^{2}$ In fact, their reactivity and catalytic properties have stimulated the recent surge of interest in the chemistry of late-metal hydroxides. ${ }^{2,3}$

Binuclear organopalladium hydroxo complexes $\left[\mathrm{Pd}_{2} \mathrm{R}_{4}{ }^{-}\right.$ $\left.(\mu-\mathrm{OH})_{2}\right]^{2-}\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5},{ }^{4} \mathrm{C}_{6} \mathrm{Cl}_{5},{ }^{5}\right.$ or $\left.\mathrm{C}_{6} \mathrm{~F}_{3} \mathrm{H}_{2}-2,4,6^{6}\right),\left[\mathrm{Pd}_{2} \mathrm{~L}_{2} \mathrm{R}_{2}-\right.$ $\left.(\mu-\mathrm{OH})_{2}\right] \quad\left(\mathrm{L}=\mathrm{PPh}_{3} ; \mathrm{R}=\mathrm{Me},{ }^{7} \quad \mathrm{Ph}^{8}{ }^{8} \mathrm{C}_{6} \mathrm{~F}_{5}\right.$ or $\left.\mathrm{C}_{6} \mathrm{Cl}_{5}{ }^{9}\right)$ and $\left[\mathrm{Pd}_{2}\left(\mathrm{~L}^{-} \mathrm{L}^{-}\right)_{2}(\mu-\mathrm{X})(\mu-\mathrm{OH})\right] \quad\left[\mathrm{L}-\mathrm{L}^{-}=8\right.$-quinolylmethyl, $\quad \mathrm{X}=$ carboxylate; ${ }^{10} \quad \mathrm{~L}-\mathrm{L}^{-}=2$-(dimethylaminomethyl)phenyl, $\quad \mathrm{X}=$ $\left.\mathrm{Br}^{11}\right]$ are known. The reaction of a labile precursor such as cis$\left[\mathrm{MR}_{2}(\mathrm{NCPh})_{2}\right]$ with $\left[\mathrm{NBu}_{4}\right] \mathrm{OH}$ or the metathesis of X^{-}by OH^{-} in a binuclear $\mathrm{M}(\mu-\mathrm{X})_{2} \mathrm{M}$ complex are the methods used for the preparation of hydroxo complexes. ${ }^{12}$ The equilibrium between $\left[\mathrm{Pd}\left(\mathrm{PR}_{3}\right)_{2} \mathrm{R}^{\prime}(\mathrm{OH})\right]$ and $\left[\mathrm{Pd}_{2}\left(\mathrm{PR}_{3}\right)_{2} \mathrm{R}^{\prime}{ }_{2}(\mu-\mathrm{OH})_{2}\right]$ has been investigated very recently. ${ }^{13}$

The basic character of these hydroxo complexes allows the preparation of a variety of mono- and bi-nuclear complexes by reaction with a protic electrophile ($\mathrm{M}-\mathrm{OH}+\mathrm{HX} \longrightarrow$ $\mathrm{M}-\mathrm{X}+\mathrm{H}_{2} \mathrm{O}$). For example, aryloxo ${ }^{14}$ and amido ${ }^{15,16}$ complexes of palladium have been prepared by reaction of a hydroxopalladium complex with phenols and amines, respectively. The binuclear complex $\left[\mathrm{Pd}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}(\mu-\mathrm{OH})_{2}\right]^{2-}$ is an efficient basic catalyst for the cyclotrimerization of malononitrile to 4,6-diamino-2-cyanomethylpyridine-3,5-dicarbonitrile. ${ }^{17}$

In this paper we report the preparation of hydroxopalladium complexes of the type $\left[\mathrm{Pd}_{2}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{R}_{2}(\mu-\mathrm{OH})_{2}\right]$ and their reactions with 3,5-dimethylpyrazole, oxalic acid, triethylphosphine and a number of arylamines.

Results and Discussion

In acetone or acetone-methanol the reaction of $\left[\mathrm{Pd}_{2}\left(\mathrm{PEt}_{3}\right)_{2^{-}}\right.$

Scheme 1 (i) OH^{-}; (ii) Hdmpz (3,5-dimethylpyrazole); (iii) $\mathrm{H}_{2} \mathrm{ox}$ (oxalic acid); (iv) PEt_{3}

$\left.\mathrm{R}_{2}(\mu-\mathrm{Cl})_{2}\right]$ with $\left[\mathrm{NBu}_{4}\right] \mathrm{OH}(\mathrm{aq})$ leads to the formation of the $\operatorname{bis}(\mu$-hydroxo) complexes $\mathbf{1}$ and 2 shown in Scheme 1. The metathesis of Cl^{-}by OH^{-}occurs smoothly at room temperature and the hydroxo complexes are isolated in ca. 90% yields. The presence of the hydroxo ligand is manifested by the observation of characteristic IR absorptions in the vicinity of 3500 cm^{-1} and of high-field proton resonances at $\delta-1.4$ (1) and -3.3 (2). The NMR data (Table 1) reveal that complexes $\mathbf{1}$ and 2 exist in CDCl_{3} solution as $1: 1$ mixtures of syn and anti isomers: two ${ }^{31} \mathrm{P}$ resonances are found for the phosphines and two ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances are also observed for the $\mathrm{CH}_{3} \mathrm{Pd}$ and $\mathrm{CH}_{2} \mathrm{P}$ groups. For the methyl nickel analogue $\left[\mathrm{Ni}_{2}\left(\mathrm{PMe}_{3}\right)_{2}-\right.$

Table 1 The NMR data (J in Hz) for the palladium complexes $\mathbf{1 - 8}$ (in CDCl_{3})

Complex	${ }^{1} \mathrm{H} \delta\left(\mathrm{SiMe}_{4}\right)$	${ }^{13} \mathrm{C} \delta\left(\mathrm{SiMe}_{4}\right)$	${ }^{31} \mathrm{P} \delta\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$
1	1.6 (m, $24 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$)	16.1 (d, $\left.\mathrm{CH}_{2} \mathrm{P}, J_{\text {CP }} 27.7\right)$	28.71 (s)
	1.3 (m, $36 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{P}$)	15.5 (d, $\left.\mathrm{CH}_{2} \mathrm{P}, J_{\text {CP }} 29.4\right)$	28.60 (s)
	0.46 (s, $6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Pd}$)	$8.1\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{P}\right)$	
	0.39 (s, $6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Pd}$)	-0.2 (br, $\mathrm{CH}_{3} \mathrm{Pd}$)	
	-1.4 (br, OH)	-3.1 (br, $\mathrm{CH}_{3} \mathrm{Pd}$)	
2	7.0 (m, $20 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$)	128.4 (br s, CH of PhCH_{2})	28.49 (s)
	2.52 (d, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pd}, J_{\mathrm{PH}} 3.8\right)$	128.1 (br s, CH of PhCH_{2})	28.18 (s)
	2.47 (d, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pd}$, $J_{\mathrm{PH}} 4.0$)	123.6 (br s, CH of PhCH_{2})	
	1.6 (m, 24 H, CH2 ${ }^{\text {P }}$)	23.5 (br, $\mathrm{CH}_{2} \mathrm{Pd}$)	
	1.0 (m, $36 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{P}$)	20.6 (br, $\mathrm{CH}_{2} \mathrm{Pd}$)	
	-2.3 (br, OH)	16.0 (br, $\mathrm{CH}_{2} \mathrm{P}$)	
	-2.4 (br, OH)	15.4 (br, $\mathrm{CH}_{2} \mathrm{P}$)	
	-3.3 (br, OH)	8.1 (s, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{P}$)	
3	5.46 (s, 2 H, 4-H of dmpz)	145.4 (s, 3-C of dmpz)	25.07 (s)
	2.17 (s, 6 H, Me of dmpz)	144.7 (s, 5-C of dmpz)	
	2.08 (s, 6 H, Me of dmpz)	101.4 (s, 4-C of dmpz)	
	1.56 (m, $12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$)	15.8 (d, $\left.\mathrm{CH}_{2} \mathrm{P}, J_{\text {CP }} 27.7\right)$	
	1.07 (m, $18 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{P}$)	14.2 (s, Me of dmpz)	
	0.15 (d, $\left.6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Pd}, J_{\mathrm{PH}} 4.1\right)$	13.7 (s, Me of dmpz)	
		$8.2\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{P}\right)$	
		-8.8 (br, $\mathrm{CH}_{3} \mathrm{Pd}$)	
4	7.0 (m, $10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$)	$171.7\left(\mathrm{~s}, \mathrm{CCH}_{2}\right.$ of $\left.\mathrm{PhCH}_{2}\right)$	22.43 (s)
	5.33 (s, 2 H, 4-H of dmpz)	145.6 (s, 3- and 5-C of dmpz)	
	3.00 (d, $\left.2 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{Pd}, J_{\mathrm{HH}} 8.9\right)$	128.7 (s, CH of PhCH_{2})	
	2.44 (dd, $\left.2 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{Pd}, J_{\mathrm{HH}}=J_{\mathrm{PH}} 8.9\right)$	127.6 (s, CH of PhCH_{2})	
	2.19 (s, 6 H, Me of dmpz)	122.3 (s, CH of PhCH_{2})	
	1.75 (s, $6 \mathrm{H}, \mathrm{Me}$ of dmpz)	101.8 (d, 4-C of dmpz, $J_{\text {CP }} 3.2$)	
		17.0 (d, $\left.\mathrm{CH}_{2} \mathrm{Pd}, J_{\text {CP }} 6.1\right)$	
	1.09 (m, $\left.18 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{P}\right)$	15.5 (d, $\mathrm{CH}_{2} \mathrm{P}, J_{\text {CP }} 27.3$)	
		14.5 (s, Me of dmpz)	
		13.4 (s, Me of dmpz)	
		$8.7\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{P}\right)$	
5	1.65 (m, $12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$)	$15.7\left(\mathrm{~d}, \mathrm{CH}_{2} \mathrm{P}, J_{\mathrm{CP}} 30.7\right)$	37.22 (s)
	1.11 (m, $18 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{P}$)	8.1 ($\mathrm{s}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{P}$)	
	0.48 (s, $6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Pd}$)	-6.3 (br, $\mathrm{CH}_{3} \mathrm{Pd}$)	
6*	$7.6\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$	129.0 (s, CH of PhCH_{2})	32.59 (s)
	7.0 (m, 6 H, C66 H_{5})	128.2 (s, CH of PhCH_{2})	
	3.06 (br s, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pd}\right)$	124.2 (s, CH of PhCH_{2})	
	1.18 (m, $12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$)	19.5 (d, $\mathrm{CH}_{2} \mathrm{Pd}, J_{\text {CP }} 3.8$)	
	0.68 (m, $18 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{P}$)	$\begin{aligned} & 14.7\left(\mathrm{~d}, \mathrm{CH}_{2} \mathrm{P}, J_{\mathrm{CP}} 29.4\right) \\ & 7.6\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{P}\right) \end{aligned}$	
7	1.75 (m, $24 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$)	$14.6\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{P}, J_{\mathrm{CP}} 12.7\right)$	15.95 (s)
	1.05 (m, 36 H, CH3 CH2 P)	14.0 (t, $\left.\mathrm{CH}_{2} \mathrm{P}, J_{\mathrm{CP}} 12.5\right)$	14.87 (s)
	0.22 (t, 3 H, CH3 Pd, $J_{\mathrm{PH}} 5.8$)	$8.3\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{P}\right)$	
	0.11 (t, 3 H, CH3 Pd, $\left.J_{\mathrm{PH}} 6.0\right)$	8.2 (s, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{P}$)	
		-6.6 (t, CH3 $\left.{ }^{2} \mathrm{Pd}, J_{\text {CP }} 4.0\right)$	
		$-9.2\left(\mathrm{t}, \mathrm{CH}_{3} \mathrm{Pd}, J_{\text {CP }} 4.7\right)$	
8	$7.3\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$	17.9 (s, $\mathrm{CH}_{2} \mathrm{Pd}$)	13.61 (s)
	$7.0\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$	15.6 (s, $\mathrm{CH}_{2} \mathrm{Pd}$)	12.35 (s)
	2.69 (t, 2 H, CH2 Pd, $J_{\text {PH }} 7.1$)	14.6 (t, $\left.\mathrm{CH}_{2} \mathrm{P}, J_{\text {CP }} 12.6\right)$	
	2.59 (t, 2 H, CH2 Pd, $J_{\mathrm{PH}} 7.1$)	13.9 ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{P}, J_{\mathrm{CP}} 12.4$)	
	1.71 (m, $12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$)	8.3 (s, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{P}$)	
	1.00 (m, $18 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{P}$)	8.2 (s, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{P}$)	

* $\operatorname{In} \mathrm{C}_{6} \mathrm{D}_{6}$.
$\left.\mathrm{Me}_{2}(\mu-\mathrm{OH})_{2}\right]$ a mixture of syn and anti isomers was also found in a ratio depending on the polarity of the solvent, ${ }^{18}$ whereas the benzylnickel complex $\left[\mathrm{Ni}_{2}\left(\mathrm{PMe}_{3}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}(\mu-\mathrm{OH})_{2}\right]^{19}$ and the perhalogenophenyl complexes $\left[\mathrm{Pd}_{2}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{R}_{2}(\mu-\mathrm{OH})_{2}\right](\mathrm{R}=$ $\mathrm{C}_{6} \mathrm{~F}_{5}$ or $\left.\mathrm{C}_{6} \mathrm{Cl}_{5}\right)^{9}$ were exclusively anti isomers. The recently reported complex $\left[\mathrm{Pd}_{2}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ph}_{2}(\mu-\mathrm{OH})_{2}\right]$ exists in solution as a 4:1 mixture of anti and syn isomers, although the anti geometry for this complex was found in the crystalline state. ${ }^{8}$

The reaction of the bis(hydroxo) complexes $\left[\mathrm{M}_{2} \mathrm{R}_{4}(\mu-\mathrm{OH})_{2}\right]^{2-}$ ($\mathrm{M}=\mathrm{Ni}, \mathrm{Pd}$ or Pt) with protic electrophiles (HL) has previously been used for the synthesis of complexes of the types $\left[\mathrm{M}_{2} \mathrm{R}_{4}(\mu-\mathrm{L})_{2}\right]^{2-4,17,20,21}$ Of these protic electrophiles, azoles have been most used because by deprotonation they produce the very versatile azolate anions which usually act as exobidentate ligands. ${ }^{22}$ When complexes $\mathbf{1}$ and $\mathbf{2}$ were treated with 3,5dimethylpyrazole (Hdmpz) in methanol, in a 1:2 molar ratio,
they yielded the corresponding azolate-bridged complexes $\left[\mathrm{Pd}_{2}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{R}_{2}(\mu-\mathrm{dmpz})_{2}\right]\left(\mathrm{R}=\mathrm{Me} 3\right.$ or $\left.\mathrm{PhCH}_{2} 4\right)$.

The single resonance observed in the ${ }^{31} \mathrm{P}$ NMR spectra of complexes $\mathbf{3}$ and $\mathbf{4}$ indicates that these are found exclusively as a single isomer in CDCl_{3} solution. If the syn symmetry is assigned to $\mathbf{3}$ and $\mathbf{4}$ the CH group of the dmpz ring should give two ${ }^{1} \mathrm{H}$ and two ${ }^{13} \mathrm{C}$ resonances in the respective spectra. The experimental NMR data (Table 1) indicate that in CDCl_{3} solution only the anti isomers are present because a single signal is observed for the CH group. Note that the two resonances observed in both the ${ }^{1} \mathrm{H}$ and the ${ }^{13} \mathrm{C}$ NMR spectra for the Me substituents of the dmpz ligand as well as the two different ${ }^{13} \mathrm{C}$ signals for C^{3} and C^{4} of the dmpz ring cannot be used to differentiate the anti and syn isomers. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4}$ also shows that the CH_{2} protons of the benzyl ligand are diastereotopic, a doublet and a doublet of doublets

Scheme 2 (i) $\mathrm{NH}_{2} \mathrm{R}^{\prime \prime}$
being observed; the last signal is seen as a pseudo-triplet due to the accidental coincidence of the coupling constants involved $\left(J_{\mathrm{HH}}=J_{\mathrm{PH}}=8.9 \mathrm{~Hz}\right)$. On irradiation of the doublet at $\delta 3.00$ the original pseudo-triplet was transformed into a doublet $\left(J_{\mathrm{PH}}=8.9 \mathrm{~Hz}\right)$ and on irradiation of the pseudo-triplet at $\delta 2.44$ the original doublet was seen as a singlet. The absence of a symmetry plane in complex 4 may be a consequence of the folded basket structure which is characteristic of this type of complex. ${ }^{23}$

The reactions of the di- μ-hydroxo complexes $\mathbf{1}$ and 2 with oxalic acid $\left(\mathrm{H}_{2} \mathrm{Ox}\right)$ in $1: 1$ molar ratio lead to the formation of the corresponding oxalate complexes $\left[\mathrm{Pd}_{2}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{R}_{2}(\mu-\mathrm{ox})\right]$ $\left(\mathrm{R}=\mathrm{Me} 5\right.$ or $\left.\mathrm{PhCH}_{2} \mathbf{6}\right)$. Their IR spectra exhibit a strong absorption at $1600 \mathrm{~cm}^{-1}$ arising from the asymmetric OCO stretching mode of doubly bridging tetradentate oxalate. ${ }^{24}$ The NMR data show the presence of only one isomer. Accordingly, we suggest for them the structure shown in Scheme 1, which is similar to that found in $\left[\mathrm{Ni}_{2}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Me}_{2}(\mu-\mathrm{ox})\right]$ or $\left[\mathrm{Pd}_{2}\left(\mathrm{SBu}_{2}\right)_{2}-\right.$ $\left.\mathrm{Ph}_{2}(\mu-\mathrm{ox})\right]{ }^{25,26}$

Complexes $\mathbf{1}$ and 2 readily undergo bridge-cleavage reactions with PEt_{3} to give the mononuclear hydroxo complexes $\left[\mathrm{Pd}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{R}(\mathrm{OH})\right]\left(\mathrm{R}=\mathrm{Me} 7\right.$ or $\left.\mathrm{PhCH}_{2} 8\right)$ shown in Scheme 1. Their NMR spectra (Table 1) indicate that both compounds exist in solution as $1: 1$ mixtures of cis and trans isomers. The virtual coupling gives rise to a triplet for the phosphine methylene group in the ${ }^{13} \mathrm{C}$ NMR spectrum of the trans isomers. Methyl(aryloxo)palladium complexes of the type $\left[\mathrm{Pd}\left(\mathrm{PEt}_{3}\right)_{2}-\right.$ $\mathrm{R}\left(\mathrm{OR}^{\prime \prime}\right)$] have been shown by ${ }^{1} \mathrm{H}$ NMR spectroscopy to exist in solution in the trans configuration with $\mathrm{M}-\mathrm{Me}$ signals ($\delta 0.19$) as triplets due to coupling with two magnetically equivalent phosphorus nuclei. ${ }^{27}$

The reactions of $\left[\mathrm{Pd}_{2} \mathrm{~L}_{2} \mathrm{R}_{2}(\mu-\mathrm{OH})_{2}\right]$ with aniline and some p substituted anilines $\left(p-\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2} ; \mathrm{X}=\mathrm{H}, \mathrm{Me}, \mathrm{MeO}, \mathrm{Cl}\right.$ or NO_{2}) have also been studied. The reactions take place in dichloromethane, in 1:1 molar ratio, and the corresponding binuclear μ-hydroxo- μ-amido palladium complexes $\mathbf{1 0}-\mathbf{1 8}$ (Scheme 2) are obtained in $67-80 \%$ yields. The analytical data for these air-stable compounds are consistent with the proposed formulae. Late transition-metal amides are still relatively uncommon ${ }^{28-30}$ and the recent interest in their chemistry stems from their potential use to facilitate the formation of carbonnitrogen bonds through the insertion of unsaturated organic molecules into the metal-nitrogen bond. \dagger Monomeric arylamido and dimeric alkylamido complexes of palladium that produce arylamines through carbon-nitrogen bond-forming reductive elimination have been isolated. ${ }^{32,33}$

The previously reported mixed amide-pentafluorophenyl

Fig. 1 An ORTEP ${ }^{34}$ drawing of complex 16 showing the non-H atoms as 20% thermal vibration ellipsoids. The phenyl groups are numbered sequentially around the rings and only the first two atoms of each ring are labelled
palladium complexes $\left[\mathrm{Pd}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mu-\mathrm{OH})\left(\mu-\mathrm{NHR}^{\prime \prime}\right)\right]^{15}$ are characterized by an anti structure, whereas the mixed acetate-amide cyclopalladated complexes $\left[\left\{\mathrm{Pd}_{2}(\mathrm{~L}-\mathrm{L})_{2}\left(\mu-\mathrm{O}_{2}-\right.\right.\right.$ $\left.\mathrm{CMe})\left(\mu-\mathrm{NHR}^{\prime \prime}\right)\right]\left(\mathrm{L}-\mathrm{L}=8\right.$-quinolylmethyl) ${ }^{10}$ are characterized by a syn structure for the C, N chelate. The two resonances observed in the ${ }^{31} \mathrm{P}$ NMR spectra of the new palladium complexes $10-18$ (Table 2), together with the observation of only one set of ${ }^{1} \mathrm{H}$ resonances for the arylamide ligand, are consistent with the anti structure proposed for them in Scheme 2. Two IR bands at 3610-3600 and 3320-3300 cm^{-1} are assigned to the OH and NH stretching vibrations, respectively. The presence of the hydroxo ligand is also established by the observation of a high-field proton resonance at $\delta c a .-2.1$ in the spectra of complexes 15-18, which appears as a doublet due to coupling to the ${ }^{31} \mathrm{P}$ nucleus trans to it; this OH resonance could not be detected for 10-14. Similarly, a broad ${ }^{1} \mathrm{H}$ resonance was observed for the amide NH group only in the spectra of $\mathbf{1 5 - 1 8}$. On addition of deuteriated water to a solution of complex 18 in CDCl_{3} the NH and OH resonances disappeared. Two $1: 1$ doublets for the methyl protons of $\mathbf{1 0} \mathbf{- 1 4}$ provide further evidence of their anti structures.

Attempts to prepare $\operatorname{bis}(\mu$-amido) complexes by treating the $\left[\mathrm{Pd}_{2} \mathrm{~L}_{2} \mathrm{R}_{2}(\mu-\mathrm{OH})_{2}\right]$ complexes $\left(\mathrm{R}=\mathrm{Me}, \mathrm{L}=\mathrm{PEt}_{3} ; \mathrm{R}=\mathrm{Ph}, \mathrm{L}=\right.$ PPh_{3}) with 2 molar equivalents of the corresponding aromatic amine were unsuccessful, possibly due to kinetic factors.

The structure of complex $\mathbf{1 6}$ was determined by X-ray diffraction (Table 3, Fig. 1). The anti structure is further confirmed. Co-ordination at each of the palladium centres is approximately square planar, with predictable narrowing of the $\mathrm{N}-\mathrm{Pd}-\mathrm{O}$ angles $\left(80.5,80.9^{\circ}\right)$ to accommodate the bridged structure. The angle between the co-ordination planes is 52.5°, indicating a substantially bent structure. Predictably the $\mathrm{Pd}-\mathrm{N}$ distance when the N is trans to the aryl ligand is longer (2.147 \AA) than when it is trans to phosphorus $(2.099 \AA)$. Similar differences in the $\mathrm{Pd}-\mathrm{O}$ distances are also noted.

A number of complexes of the type $\left[\mathrm{Pd}_{2} \mathrm{~L}_{4}(\mu-\mathrm{X})(\mu-\mathrm{Y})\right]$ and platinum analogues have been structurally characterized, and complexes with either a planar or a puckered $\mathrm{M}_{2} \mathrm{XY}$ ring are known. Thus $\left[\mathrm{Pd}_{2}\left(\mathrm{~N}_{3}\right)_{6}\right]^{2-},{ }^{35}\left[\mathrm{Pt}_{2}\left(\mathrm{NH}_{3}\right)_{4}(\mu-\mathrm{OH})_{2}\right] \mathrm{CO}_{3}$. $2 \mathrm{H}_{2} \mathrm{O}^{36}\left[\mathrm{Pt}_{2}(\mathrm{dmso})_{4}(\mu-\mathrm{OH})_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2} \quad(\mathrm{dmso}=$ dimethyl sulfoxide $),{ }^{37} \quad\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{SO}\right)(\mu-\mathrm{OH})_{2}\right]\left[\mathrm{NO}_{3}\right]_{2},{ }^{38} \quad\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{Pd}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}-\right.$ $\left.(\mu-\mathrm{OH})_{2}\right]^{4}$ and $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{Pt}_{2}(\mathrm{dppf})(\mu-\mathrm{OH})_{2}\right]\left[\mathrm{BF}_{4}\right]_{2}\left[\mathrm{dppf}=1,1^{\prime}-\right.$ bis(diphenylphosphino)ferrocene] ${ }^{39}$ all have planar $\mathrm{M}_{2} \mathrm{X}_{2}$ cores. However, $\quad\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{Pd}_{2}(\right.$ dppe $\left.)(\mu-\mathrm{OH})_{2}\right] \mathrm{X}_{2} \quad\left(\right.$ dppe $=\mathrm{Ph}_{2} \mathrm{PCH}_{2}-$
\dagger For example, the reported reaction of amines with hydroxo-bridged palladium(II) and platinum(II) complexes in the presence of CS_{2} to give dialkyldithiocarbamate complexes, $>\mathrm{M}(\mu-\mathrm{OH})_{2} \mathrm{M}<+2 \mathrm{RNH}_{2}+2$ $\mathrm{CS}_{2} \longrightarrow 2>\mathrm{MS}_{2} \mathrm{CNHR}_{2}+2 \mathrm{H}_{2} \mathrm{O}$, might be the insertion of CS_{2} into the $\mathrm{M}-\mathrm{N}$ bond of an intermediate amido complex. ${ }^{31}$

Table 2 The NMR data (J in Hz) for the amide complexes (in CDCl_{3})

Complex
${ }^{1} \mathrm{H} \delta\left(\mathrm{SiMe}_{4}\right)$
$7.21\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{o}, J\left(\mathrm{H}_{o} \mathrm{H}_{m}\right) 8.1\right]$
$7.17\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{o}, J\left(\mathrm{H}_{o} \mathrm{H}_{m}\right) 8.1\right]$
$7.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{m}}\right)$
6.63 (dd, 2 H, H,$J 7.7$)
$1.54\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right)$
$1.06\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{P}\right)$
0.18 (d, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Pd}, J_{\mathrm{PH}} 3.4$)
0.11 (d, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Pd}$, $J_{\mathrm{PH}} 3.4$)
7.13 [d, $1 \mathrm{H}, \mathrm{H}_{o}, J\left(\mathrm{H}_{o} \mathrm{H}_{m}\right) 8.0$]
7.09 [d, $1 \mathrm{H}, \mathrm{H}_{o}, J\left(\mathrm{H}_{o} \mathrm{H}_{m}\right) 8.0$]
$6.81\left[\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{m}, J\left(\mathrm{H}_{o} \mathrm{H}_{m}\right) 8.0\right]$
$2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of $\left.p-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)$
$1.55\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right)$
$1.08\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{P}\right)$
0.18 (d, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Pd}, J_{\mathrm{PH}} 3.3$)
$0.11\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Pd}, J_{\mathrm{PH}} 3.3\right)$
7.20 [d, $\left.2 \mathrm{H}, \mathrm{H}_{o}, J\left(\mathrm{H}_{o} \mathrm{H}_{m}\right) 8.3\right]$
6.63 [d, $2 \mathrm{H}, \mathrm{H}_{m}, J\left(\mathrm{H}_{o} \mathrm{H}_{m}\right) 8.3$]
$3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of $\left.p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)$
$1.55\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right)$
$1.05\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{P}\right)$
0.18 (d, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Pd}, J_{\mathrm{PH}} 3.0$)
0.11 (d, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Pd}, J_{\mathrm{PH}} 3.0$)
$7.12\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{o}, J\left(\mathrm{H}_{o} \mathrm{H}_{m}\right) 7.9\right]$
7.10 [d, $\left.1 \mathrm{H}, \mathrm{H}_{o}, J\left(\mathrm{H}_{o} \mathrm{H}_{m}\right) 7.9\right]$
6.92 [d, $\left.2 \mathrm{H}, \mathrm{H}_{m}, J\left(\mathrm{H}_{o} \mathrm{H}_{m}\right) 7.9\right]$
$1.52\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right)$
$1.07\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{P}\right)$
$0.15\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Pd}, J_{\mathrm{PH}} 3.0\right)$
0.08 (d, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Pd}, J_{\mathrm{PH}} 3.0$)
7.94 [d, $2 \mathrm{H}, \mathrm{H}_{o}, J\left(\mathrm{H}_{o} \mathrm{H}_{m}\right) 9.0$]
7.17 [d, $2 \mathrm{H}, \mathrm{H}_{m}, J\left(\mathrm{H}_{o} \mathrm{H}_{m}\right) 9.0$]
$1.60\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right)$
1.11 (m, $18 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{P}$)
$0.39\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Pd}, J_{\mathrm{PH}} 3.0\right)$
7.4-6.4 (aromatics)
1.61 (br, NH)
-2.10 (d, $1 \mathrm{H}, \mathrm{OH})$
7.4-7.1 (m, $30 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Pd}$)
$6.96\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{o}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Pd}\right)$
$6.81\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{o}\right.$ of $\left.p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{~N}, J 7.5\right)$
6.7-6.5 (m, $8 \mathrm{H}, \mathrm{H}_{m}+\mathrm{H}_{p}$ of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Pd}$ and
H_{m} of $p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{~N}$)
2.19 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$)
1.60 (br, NH)
$-2.12\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}, J_{\mathrm{PH}} 3.3\right)$
7.5-7.1 (m, $30 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{P}$)
$7.02\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{o}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Pd}\right)$
$6.86\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{o}\right.$ of $\left.p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~N}, J 7.8\right)$
$6.7-6.5\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{m}+\mathrm{H}_{p}\right.$ of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Pd}$ and
H_{m} of $p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~N}$)
3.78 (s, $3 \mathrm{H}, \mathrm{MeO}$)
1.62 (br, NH)
$-2.09\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}, J_{\mathrm{PH}} 3.6\right)$
7.4-7.1 (m, $30 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{P}$)
6.94 (m, $4 \mathrm{H}_{o}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Pd}$)
6.8-6.5 (m, 8 H, $\mathrm{H}_{m}+\mathrm{H}_{p}$ of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Pd}$ and
H_{m} of $p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{~N}$)
1.55 (br, NH)
$-2.11\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}, J_{\mathrm{PH}} 3.3\right) \quad 32.8(\mathrm{~s})$
$7.75(\mathrm{~d}, 2 \mathrm{H}, J 9.3)$
6.8-6.4 (m, 8 H, $\mathrm{H}_{m}+\mathrm{H}_{p}$ of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Pd}$ and
H_{m} of $p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~N}$)
1.70 (br, $1 \mathrm{H}, \mathrm{NH})$
$-1.90\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}, J_{\mathrm{PH}} 3.4\right)$
$\mathrm{CH}_{2} \mathrm{PPh}_{2}$) has an angle between the PdO_{2} planes of $33.8(8)^{\circ} 40$ and the angle between the PtN_{2} planes in $\left[\mathrm{Pt}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{4}(\mu-\right.$ $\left.\left.\mathrm{NH}_{2}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]_{2}$ is $32^{\circ} .^{41}$ With few exceptions, phosphine ligands seem to predispose complexes to adopt a puckered form. Examples include $\left[\mathrm{Pt}_{2}\left(\mathrm{PEt}_{3}\right)_{4}(\mu-\mathrm{OH})_{2}\right]\left[\mathrm{BF}_{4}\right]_{2} \quad\left(36.4^{\circ}\right){ }^{42} \quad\left[\mathrm{Pt}_{2}-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{NH}_{2}\right)_{2}\right]\left(45^{\circ}\right),{ }^{43}\left[\mathrm{Pt}_{2}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Me}_{2}\left(\mu-\mathrm{NH}_{2}\right)_{2}\right]\left(45^{\circ}\right)^{30}$ and anti- $\left[\left\{\mathrm{Pd}\left(\mathrm{Bu}^{2} \mathrm{NC}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mu-\mathrm{NHPh})\right\}_{2}\right]\left(32.7^{\circ}\right) .{ }^{15}$ The present

Table 3 Selected bond lengths ((\AA) and angles $\left({ }^{\circ}\right)$ for complex 16

$\mathrm{Pd}(1)-\mathrm{O}(1)$	$2.093(4)$	$\mathrm{Pd}(1)-\mathrm{P}(1)$	$2.213(2)$
$\mathrm{Pd}(1)-\mathrm{C}(8)$	$1.994(7)$	$\mathrm{Pd}(1)-\mathrm{N}$	$2.147(6)$
$\mathrm{Pd}(2)-\mathrm{O}(1)$	$2.159(5)$	$\mathrm{Pd}(2)-\mathrm{P}(2)$	$2.242(2)$
$\mathrm{Pd}(2)-\mathrm{C}(32)$	$1.979(8)$		$2.099(5)$
		$\mathrm{Pd}(2)-\mathrm{N}$	
$\mathrm{O}(1)-\mathrm{Pd}(1)-\mathrm{N}$	$80.9(2)$	$\mathrm{Pd}(1)-\mathrm{O}(1)-\mathrm{Pd}(2)$	$87.9(2)$
$\mathrm{O}(1)-\mathrm{Pd}(2)-\mathrm{N}$	$80.5(2)$	$87.9(2)$	

structure shows one of the most puckered rings observed to date; looking at the data available for comparison it is tempting to attribute this to steric interference between the bulky phosphine and the bridging group, but this cannot be conclusive.

Experimental

The analyses ($\mathrm{C}, \mathrm{H}, \mathrm{N}$) were performed with a Carlo Erba model EA 1108 microanalyzer. Decomposition temperatures were determined with a Mettler TG-50 thermobalance at a heating rate of $5^{\circ} \mathrm{C} \mathrm{min}^{-1}$ and the solid samples under a nitrogen flow ($100 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$). The NMR spectra were recorded on a Bruker AC 200E or a Varian Unity 300 spectrometer, infrared spectra on a Perkin-Elmer 1430 spectrophotometer using Nujol mulls between polyethylene sheets. Solvents were dried by the usual methods. The precursor $\left[\mathrm{Pd}_{2}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Me}_{2}(\mu-\mathrm{Cl})_{2}\right]$ was prepared by the procedure described elsewhere ${ }^{19}$ and $\left[\mathrm{Pd}_{2}\left(\mathrm{PEt}_{3}\right)_{2}-\right.$ $\left.\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}(\mu-\mathrm{Cl})_{2}\right]$ by the following method. A commercially available diethyl ether solution (1 m) of $\mathrm{Mg}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{Cl}\left(1 \mathrm{~cm}^{3}, 1\right.$ $\mathrm{mmol})$ was added to an orange suspension of $\left[\mathrm{Pd}_{2}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Cl}_{2}-\right.$ $\left.(\mu-\mathrm{Cl})_{2}\right](0.2 \mathrm{~g}, 0.338 \mathrm{mmol})$ in diethyl ether-tetrahydrofuran $\left(1: 1 \mathrm{v} / \mathrm{v}, 14 \mathrm{~cm}^{3}\right)$. The mixture was stirred for 1.5 h to give a yellow solution. Methanol was then added to solvolyse the magnesium by-product and the solvent was completely evaporated. The residue was extracted with diethyl etherdichloromethane ($1: 1 \mathrm{v} / \mathrm{v}, 14 \mathrm{~cm}^{3}$), and then the extract was concentrated to dryness. Addition of hexane followed by vigorous stirring rendered a yellow suspension, from which a yellow solid was filtered off and air-dried. Yield $0.146 \mathrm{~g}, 62 \%$.

Preparations

Complex 1. To a solution of $\left[\left\{\operatorname{Pd}\left(\mathrm{PEt}_{3}\right) \mathrm{Me}(\mu-\mathrm{Cl})\right\}_{2}\right](0.2 \mathrm{~g}$, 0.364 mmol) in acetone ($10 \mathrm{~cm}^{3}$) was added $20 \%\left[\mathrm{NBu}_{4}\right] \mathrm{OH}$ (aq) $\left(0.95 \mathrm{~cm}^{3}, 0.728 \mathrm{mmol}\right)$, with constant stirring for 15 min . After partial evaporation of the solvent under reduced pressure, addition of water followed by vigorous stirring and filtration afforded a white solid which was air-dried. Yield 90% (Found: C, 32.2; H, 7.2. Calc. for $\mathrm{C}_{14} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Pd}_{2}: \mathrm{C}, 32.8 ; \mathrm{H}, 7.5 \%$). M.p. $112^{\circ} \mathrm{C}$ (decomp.). IR (Nujol, cm^{-1}): 3520 (OH str) and 525 (PdC str).

Complex 2. To a solution of $\left[\left\{\mathrm{Pd}_{(}\left(\mathrm{PEt}_{3}\right)\left(\mathrm{PhCH}_{2}\right)(\mu-\mathrm{Cl})\right\}_{2}\right](0.2$ $\mathrm{g}, 0.285 \mathrm{mmol}$) in acetone-methanol ($1: 1,10 \mathrm{~cm}^{3}$) was added $20 \%\left[\mathrm{NBu}_{4}\right] \mathrm{OH}(\mathrm{aq})\left(0.74 \mathrm{~cm}^{3}, 0.57 \mathrm{mmol}\right)$. After 5 min of stirring solvent was partially evaporated under reduced pressure. Addition of water gave a yellow precipitate which was filtered off and air-dried. Yield 89\% (Found: C, 46.6; H, 6.8. Calc. for $\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Pd}_{2}$: C, 46.9 ; H, 7.0%). M.p. $112{ }^{\circ} \mathrm{C}$ (decomp.). IR (Nujol, cm^{-1}): 3500 (OH str) and 525 ($\mathrm{PdC} \mathrm{str)}$.

Complexes 3-6. To a solution of the corresponding hydroxo complex ($\mathbf{1}$ or 2) (0.156 mmol) in methanol was added $3,5-$ dimethylpyrazole $(0.312 \mathrm{mmol})$ or oxalic acid $(0.156 \mathrm{mmol})$ with constant stirring for 1 h to afford a suspension from which solvent was partially evaporated under reduced pressure. The precipitate was filtered off and air-dried. Complex 3: yield 69% (Found: C, 42.8; H, 7.5; N, 8.1. Calc. for $\mathrm{C}_{24} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{Pd}_{2}$: C, 43.1 ; H, 7.5; N, 8.4%); m.p. $266^{\circ} \mathrm{C}$ (decomp.); IR (Nujol, cm^{-1}) 525 (PdC str). Complex 4: yield 68\% (Found: C, 52.2; H, 6.8; N,
7.0. Calc. for $\mathrm{C}_{36} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{Pd}_{2}$: C, 52.6; $\mathrm{H}, 7.1 ; \mathrm{N}, 6.8 \%$); m.p. $210^{\circ} \mathrm{C}$ (decomp.). Complex 5: yield 65% (Found: C, 33.6; H, 6.2. Calc. for $\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{NO}_{4} \mathrm{P}_{2} \mathrm{Pd}_{2}: \mathrm{C}, 33.9 ; \mathrm{H}, 6.4 \%$); m.p.: $186^{\circ} \mathrm{C}$ (decomp.); IR (Nujol, $\left.\mathrm{cm}^{-1}\right) 1600\left(\mathrm{CO}_{2}\right.$ asym str) and 545 (PdC str). Complex 6: yield 70% (Found: C, 46.6 ; H, 5.2. Calc. for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pd}_{2}: \mathrm{C}, 46.8 ; \mathrm{H}, 6.2 \%$); m.p. $206^{\circ} \mathrm{C}$ (decomp.); IR (Nujol, $\left.\mathrm{cm}^{-1}\right) 1600\left(\mathrm{CO}_{2}\right.$ asym str).

Complexes 7 and 8. Triethylphosphine (0.312 mmol) was added to a solution of complex $\mathbf{1}$ or $\mathbf{2}(0.156 \mathrm{mmol})$ in acetone $\left(6 \mathrm{~cm}^{3}\right)$. The solution was stirred for 15 min and concentrated under reduced pressure. On addition of water $\mathbf{7}$ or $\mathbf{8}$ precipitated as a solid which was filtered off and air-dried. Complex 7: yield 63% (Found: C, $41.0 ; \mathrm{H}, 8.8$. Calc. for $\mathrm{C}_{13} \mathrm{H}_{34} \mathrm{OP}_{2} \mathrm{Pd}$: C, 41.7 ; H, 9.1%); m.p. $216^{\circ} \mathrm{C}$ (decomp.); IR (Nujol, cm^{-1}) 515 (PdC str). Complex 8: yield 65\% (Found: C, 49.9; H, 8.1. Calc. for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{OP}{ }_{2} \mathrm{Pd}: \mathrm{C}, 50.6 ; \mathrm{H}, 8.5 \%$); m.p. $191{ }^{\circ} \mathrm{C}$ (decomp.).

Complexes 9-13. The appropriate amine $\mathrm{R}^{\prime \prime} \mathrm{NH}_{2}(0.1169$ $\mathrm{mmol})$ was added to a solution of $\left[\mathrm{Pd}_{2}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Me}_{2}(\mu-\mathrm{OH})_{2}\right](60$ $\mathrm{mg}, 0.1169 \mathrm{mmol})$ in dichloromethane $\left(4 \mathrm{~cm}^{3}\right)$ and the solution stirred at room temperature for 30 min and concentrated to dryness under vacuum. The residue was treated with $\operatorname{Pr}^{\mathrm{i}} \mathrm{OH}$ and the pale yellow (orange for 5) solid was filtered off and airdried. Complexes 9-13 were recrystallized from dichloro-methane-hexane. Complex 9: yield 76% (Found: C, 40.5; H, 7.2; Calc. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NOP}_{2} \mathrm{Pd}_{2}: \mathrm{C}, 40.8 ; \mathrm{H}, 7.4 ; \mathrm{N}, 2.4 \%$); m.p. $167^{\circ} \mathrm{C}$ (decomp.); IR (Nujol, cm^{-1}) 3605 (OH str) and 3305 (NH str). Complex 10: yield 71% (Found: C, 41.5; H, 7.3; N, 2.1. Calc. for $\mathrm{C}_{21} \mathrm{H}_{45} \mathrm{NOP}_{2} \mathrm{Pd}_{2}$: C, 41.9; H, 7.5; N, 2.3\%); m.p. $169^{\circ} \mathrm{C}$ (decomp.); IR (Nujol, cm^{-1}) 3600 (OH str) and 3300 (NH str). Complex 11: yield 75\% (Found: C, 40.4; H, 7.1; N, 2.4. Calc. for $\mathrm{C}_{21} \mathrm{H}_{45} \mathrm{NO}_{2} \mathrm{P}_{2} \mathrm{Pd}_{2}: \mathrm{C}, 40.8 ; \mathrm{H}, 7.3 ; \mathrm{N}, 2.3 \%$); m.p. $169^{\circ} \mathrm{C}$ (decomp.); IR (Nujol, cm^{-1}) $3600(\mathrm{OH}$ str) and 3300 (NH str). Complex 12: yield 67% (Found: C, 38.2; H, 6.5; N, 2.2. Calc. for $\mathrm{C}_{20} \mathrm{H}_{42} \mathrm{ClNOP}_{2} \mathrm{Pd}_{2}: \mathrm{C}, 38.6 ; \mathrm{H}, 6.8 ; \mathrm{N}, 2.3 \%$); m.p. $165^{\circ} \mathrm{C}$ (decomp.); IR (Nujol, cm^{-1}) $3605(\mathrm{OH}$ str) and 3305 (NH str). Complex 13: yield 71% (Found: C, 37.6; H, 6.5; N, 4.5. Calc. for $\mathrm{C}_{20} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Pd}_{2}: \mathrm{C}, 37.9 ; \mathrm{H}, 6.7 ; \mathrm{N}, 4.4 \%$); m.p. $187^{\circ} \mathrm{C}$ (decomp.); IR (Nujol, cm^{-1}) 3600 (OH str) and 3300 (NH str).

Complexes 14-18. The appropriate amine $\mathrm{R}^{\prime \prime} \mathrm{NH}_{2}(0.0866$ $\mathrm{mmol})$ was added to a solution of $\left[\mathrm{Pd}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mu-\mathrm{OH})_{2}\right](80 \mathrm{mg}$, $0.0866 \mathrm{mmol})$ in dichloromethane $\left(6 \mathrm{~cm}^{3}\right)$ and the solution was stirred at room temperature for 30 min and concentrated to dryness under vacuum. The residue was treated with etherhexane and the white or pale yellow solid was filtered off and air-dried. Complexes 14-18 were recrystallized from dichloro-methane-hexane. Complex 14: yield 79% (Found: C, 64.5 ; H, 4.6; $\mathrm{N}, ~ 1.5$. Calc. for $\mathrm{C}_{54} \mathrm{H}_{47} \mathrm{NOP}_{2} \mathrm{Pd}_{2}: \mathrm{C}, 64.8 ; \mathrm{H}, 4.7 ; \mathrm{N}$, 1.4%); m.p. $178^{\circ} \mathrm{C}$ (decomp.); IR (Nujol, cm^{-1}) 3600 (OH str) and 3320 (NH str). Complex 15: yield 78\% (Found: C, 65.1; H, 4.9; $\mathrm{N}, 1.5$. Calc. for $\mathrm{C}_{55} \mathrm{H}_{49} \mathrm{NOP}_{2} \mathrm{Pd}_{2}$: C, 65.1; H, 4.9; $\mathrm{N}, 1.4 \%$); m.p. $176^{\circ} \mathrm{C}$ (decomp.); IR (Nujol, cm^{-1}) 3610 (OH str) and 3320 (NH str). Complex 16: yield 77\% (Found: C, 63.9; H, 4.9; N, 1.4. Calc. for $\mathrm{C}_{55} \mathrm{H}_{49} \mathrm{NO}_{2} \mathrm{P}_{2} \mathrm{Pd}_{2}: \mathrm{C}, 64.1 ; \mathrm{H}, 4.8 ; \mathrm{N}, 1.4 \%$); m.p. $178^{\circ} \mathrm{C}$ (decomp.); IR (Nujol, cm^{-1}) 3605 (OH str) and 3305 (NH str). Complex 17: yield 76% (Found: C, 62.6; H, 4.5; N, 1.4. Calc. for $\left.\mathrm{C}_{54} \mathrm{H}_{46} \mathrm{ClNOP}_{2} \mathrm{Pd}_{2}: \mathrm{C}, 62.7 ; \mathrm{H}, 4.5 ; \mathrm{N}, 1.4 \%\right)$; m.p. $184^{\circ} \mathrm{C}$ (decomp.); IR (Nujol, cm^{-1}) 3605 (OH str) and 3315 (NH str). Complex 18: yield 80% (Found: C, 62.2; H, 4.6; N, 2.6. Calc. for $\mathrm{C}_{54} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Pd}_{2}: \mathrm{C}, 62.0 ; \mathrm{H}, 4.4 ; \mathrm{N}, 2.7 \%$); m.p. $182^{\circ} \mathrm{C}$ (decomp.); IR (Nujol, cm^{-1}) 3605 (OH str) and 3315 (NH str).

Crystallography

Suitable crystals (dichloromethane solvated) of complex 16 were obtained from dichloromethane-hexane.

Crystal data. $\mathrm{C}_{56} \mathrm{H}_{51} \mathrm{Cl}_{2} \mathrm{NO}_{2} \mathrm{P}_{2} \mathrm{Pd}_{2}, M=1115.7$, crystal size $0.2 \times 0.2 \times 0.1 \mathrm{~mm}$, triclinic, space group $\mathrm{P} \overline{1}$ (no. 2), $a=$ 9.834(4), $b=12.388(3), c=21.345(10) \AA, \alpha=94.18(3), \quad \beta=$ 93.40(4), $\gamma=94.04(3)^{\circ}, \quad U=2581.5(2) \AA^{3}$ (by least-squares refinement on 25 reflections $7<\theta<9^{\circ}, \lambda=0.71073 \AA$), $Z=2$, $D_{\mathrm{c}}=1.44 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=8.9 \mathrm{~cm}^{-1}, F(000)=1132$.

Data collection and processing. Enraf-Nonius CAD 4 diffractometer, $\theta-2 \theta$ mode, graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation, $h 0-11, k-14$ to $14, l-25$ to $25,2<\theta<25^{\circ}$. 9075 Total unique reflections measured, 6519 significant reflections $\left[\left|F^{2}\right|>2 \sigma\left(F^{2}\right)\right]$. Maximum change in standard reflections -0.4%, no decay correction. Empirical absorption, $T_{\max }=1.00$, $T_{\min }=0.80$ from ψ scans, $T=293 \mathrm{~K}$.

Structure analysis and refinement. Non-H atoms located by heavy-atom methods (SHELXS 86). ${ }^{44}$ Full-matrix least squares refinement with non-H atoms anisotropic (MOLEN). ${ }^{45}$ Hydrogen atoms on $\mathrm{O}(1)$ and $\mathrm{C}(7)$ were omitted; the rest were calculated positions, $U_{\text {iso }}=1.3 U_{\text {eq }}$ for parent atom. $R=0.058$, $R^{\prime}=0.065, S=1.7$. Number of variables 586, number of observed reflections $6519 .(\Delta / \sigma)_{\text {max }}=0.5,(\Delta / \rho)_{\text {max,min }}+1.37$, $-0.15 \mathrm{e} \AA^{-3} \cdot \sigma\left(F^{2}\right)=\left[\sigma^{2}(I)+(0.04 I)^{2}\right]^{\frac{1}{2}} L_{\mathrm{\rho}}, w=\sigma^{-2}(F), \Sigma w\left(\left|F_{\mathrm{o}}\right|-\right.$ $\left.\left|F_{\mathrm{c}}\right|\right)^{2}$ minimised.

CCDC reference number 186/685.

Acknowledgements

Financial support from the Dirección General de Investigación Científica y Técnica (project PB94-1157), Spain is gratefully acknowledged. V. R. thanks the Dirección General Universidad de la Comunidad Autónoma de Murcia, Spain, for a research grant.

References

1 T. Yoshida, T. Okano and S. Otsuka, J. Chem. Soc., Dalton Trans., 1976, 993.
2 H. E. Bryndza and W. Tam, Chem. Rev., 1988, 88, 1163.
3 R. G. Bergman, Polyhedron, 1995, 14, 3227.
4 G. López, J. Ruiz, G. García, C. Vicente, J. Casabó, E. Molins and C. Miravitlles, Inorg. Chem., 1991, 30, 2605.

5 G. López, J. Ruiz, G. García, J. M. Martí, G. Sánchez and J. García, J. Organomet. Chem., 1991, 412, 435.

6 G. López, G. García, G. Sánchez, M. D. Santana, J. Ruiz and J. García, Inorg. Chim. Acta, 1991, 188, 195.

7 V. V. Grushin, C. Bensimon and H. Alper, Organometallics, 1995, 14, 3259.
8 V. V. Grushin and H. Alper, Organometallics, 1993, 12, 1890.
9 J. Ruiz, C. Vicente, J. M. Martí, N. Cutillas, G. García and G. López, J. Organomet. Chem., 1993, 460, 241.

10 J. Ruiz, N. Cutillas, J. Torregrosa, G. García, G. López, P. A. Chaloner, P. B. Hitchcock and R. M. Harrison, J. Chem. Soc., Dalton Trans., 1994, 2353.
11 J. Ruiz, N. Cutillas, J. Sampedro, G. López, J. A. Hermoso and M. Martínez-Ripoll, J. Organomet. Chem., 1996, 526, 67.

12 G. López, G. García, J. Ruiz, G. Sánchez, J. García and C. Vicente, J. Chem. Soc., Chem. Commun., 1989, 1045.

13 V. V. Grushin and H. Alper, Organometallics, 1996, 15, 5242.
14 J. Ruiz, V. Rodríguez, G. López, P. A. Chaloner and P. B. Hitchcock, Organometallics, 1996, 15, 1662.
15 J. Ruiz, M. T. Martínez, C. Vicente, G. García, G. López, P. A. Chaloner and P. B. Hitchcock, Organometallics, 1993, 12, 4321.

16 M. S. Driver and J. F. Hartwig, J. Am. Chem. Soc., 1996, 118, 4206.
17 Unpublished work, see also, G. López, G. Sánchez, G. García, J. Ruiz, J. García, M. Martínez-Ripoll, A. Vegas and J. A. Hermoso, Angew. Chem., Int. Ed. Engl., 1991, 30, 716.
18 H. F. Klein and H. H. Karsch, Chem. Ber., 1973, 1433.
19 E. Carmona, J. M. Marín, M. Paneque and M. L. Poveda, Inorg. Chem., 1989, 28, 1985.
20 G. López, G. García, G. Sánchez, J. García, J. Ruiz, J. A. Hermoso, A. Vegas and M. Martínez Ripoll, Inorg. Chem., 1992, 31, 1518.

21 G. López, J. Ruiz, G. García, C. Vicente, V. Rodríguez, G. Sánchez, J. A. Hermoso and M. Martínez Ripoll, J. Chem. Soc., Dalton Trans., 1992, 1681.
22 S. Trofimenko, Prog. Inorg. Chem., 1986, 34, 115.
23 R. Mason and D. R. Russell, Chem. Commun., 1966, 26.
24 K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1986, p. 244.
25 H. F. Klein, T. Wiemer, M. J. Menu, M. Dartiguenave and Y. Dartiguenave, Inorg. Chim. Acta, 1988, 154, 21.

26 R. Krämer, K. Polborn and W. Beck, J. Organomet. Chem., 1992, 441, 333.
27 S. Komiya, Y. Akai, K. Tanaka, T. Yamamoto and A. Yamamoto, Organometallics, 1985, 4, 1130.
28 R. E. Blake, jun., R. H. Hein and T. D. Tilley, Polyhedron, 1992, 11, 709.

29 N. W. Alcock, P. Bergamini, T. J. Kemp, P. G. Pringle, S. Sostero and O. Traverso, Inorg. Chem., 1991, 30, 1594.

30 S. Park, A. L. Rheingold and D. M. Roundhill, Organometallics, 1991, 10, 615
31 G. López, J. Ruiz, G. García, C. Vicente, J. M. Martí and V. Rodríguez, J. Organomet. Chem., 1992, 436, 121.

32 M. S. Driver and J. F. Hartwig, J. Am. Chem. Soc., 1995, 117, 4708.
33 J. Louie, F. Paul and J. F. Hartwig, Organometallics, 1996, 15, 2794.

34 C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
35 W. P. Fehlhammer and L. F. Dahl, J. Am. Chem. Soc., 1972, 94, 3377.

36 B. Lippert, C. J. L. Lock, B. Rosenberg and M. Zvagulis, Inorg. Chem., 1978, 17, 2971.
37 F. D. Rochon, P. C. Kong and R. Melanson, Acta Crystallogr., Sect. C, 1985, 41, 1602.
38 F. D. Rochon and F. Guay, Acta Crystallogr., Sect. C, 1987, 43, 43.
39 B. Longato, G. Pilloni, G. Valle and B. Corain, Inorg. Chem., 1988, 27, 956.
40 C. Pisano, G. Consiglio, A. Sironi and M. Moret, J. Chem. Soc., Chem. Commun., 1991, 421.
41 C. A. Mahoney, I. V. Parkin, D. J. Williams and J. D. Woolins, Polyhedron, 1989, 8, 1979.
42 G. W. Bushnell, Can. J. Chem., 1978, 56, 1773.
43 S. Park, D. M. Roundhill and A. L. Rheingold, Inorg. Chem., 1987, 26, 3972.
44 G. M. Sheldrick, SHELXS 86, Program for Solution of Crystal Structures, University of Göttingen, 1986.
45 MOLEN, CAD4 Software, Version 5.0, Enraf-Nonius, Delft, 1989.
Received 16th June 1997; Paper 7/04203E

